Search results for "Cancer immunology"
showing 5 items of 5 documents
Myeloid cells as orchestrators of the tumor microenvironment: novel targets for nanoparticular cancer therapy.
2016
Macrophages, myeloid-derived suppressor cells and tolerogenic dendritic cells are central players of a heterogeneous myeloid cell population, with the ability to suppress innate and adaptive immune responses and thus to promote tumor growth. Their influx and local proliferation are mainly induced by the cancers themselves, and their numbers in the tumor microenvironment and the peripheral blood correlate with decreased survival. Therapeutic targeting these innate immune cells, either aiming at their elimination or polarization toward tumor suppressive cells is an attractive novel approach to control tumor progression and block metastasis. We review the current understanding of cancer immun…
Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells.
2017
ABSTRACT The B16F10 murine melanoma cell line displays a low expression of MHC class I molecules favoring immune evasion and metastases in immunocompetent C57 BL/6 wild-type mice. Here, we generated metastases to the liver, an organ that is skewed towards immune tolerance, by intrasplenic injection of B16F10 cells in syngeneic C57 BL/6 compared to allogeneic Balb/c mice. Surprisingly, Balb/c mice, which usually display a pronounced M2 macrophage and Th2 T cell polarization, were ∼3 times more susceptible to metastasis than C57 BL/6 mice, despite a much higher M1 and Th1 T cell immune response. The anti-metastatic advantage of C57 BL/6 mice could be attributed to a more potent NK-cell mediat…
Genomics Meets Cancer Immunotherapy
2014
High-throughput cancer genomics and bioinformatics are revolutionizing our ability to profile tumor samples. With next-generation sequencing (NGS) and high-performance computing (HPC) platforms, we have developed the infrastructures to determine and characterize tumor genomes and transcriptomes within days. Now, we are integrating these platforms into both cancer immunology and patient therapy decision-making. Here, we briefly describe the technology platforms and highlight several emerging applications: profiling of tumor mutations and gene expression; determination of HLA type and tumor expression, enabling prediction of immunogenic tumor mutations; and identification of viruses present i…
FlowCT for the analysis of large immunophenotypic data sets and biomarker discovery in cancer immunology
2022
Key Points FlowCT is a new computational workspace for unveiling cellular diversity and objectively identifying biomarkers in large immune monitoring studies.FlowCT identified T-cell biomarkers predictive of malignant transformation and survival in SMM and active MM data sets.
Flow Cytometry in Cancer Immunotherapy: Applications, Quality Assurance, and Future
2014
Cancer immunotherapy seeks to elicit or augment the antitumor immune response in a patient in order to enlist the help of the patient’s own immune system for tumor control. In this context, immune monitoring provides evidence of immunogenicity, guides the choice and dosage of antigens, assesses the effects of immune modulators and therapy combinations, and has the potential to reveal early biomarkers of clinical efficacy. In view of their role in the anticancer immune response, the quantity and quality of tumor antigen-specific effector CD4+ and CD8+ T cells are of particular interest, and characterization of regulatory T cells and myeloid-derived suppressor cells is increasingly relevant. …